
Inoculation Against Malware Infection Using Kernel-level
Software Sensors

Raymond Canzanese and Moshe Kam
Dept. of Electrical and Computer Engineering

Drexel University
Philadelphia, PA, U.S.A.

{rcanzanese,kam}@minerva.ece.drexel.edu

Spiros Mancoridis
Dept. of Computer Science

Drexel University
Philadelphia, PA, U.S.A.
spiros@drexel.edu

ABSTRACT
We present a technique for dynamic malware detection that
relies on a set of sensors that monitor the interaction of ap-
plications with the underlying operating system. By moni-
toring the requests that each process makes to kernel-level
operating system functions, we build a statistical model that
describes both clean and infected systems in terms of the
distribution of data collected from each sensor. The model
parameters are learned from labeled training data gathered
from machines infected with canonical samples of malware.
We present a technique for detecting malware using the
Neyman-Pearson test from classical detection theory. This
technique classifies a system as either clean or infected at
runtime as measurements are collected from the sensors. We
provide experimental results that illustrate the effectiveness
of this technique for a selection of malware samples. Addi-
tionally, we provide a performance analysis of our sensing
and detection techniques in terms of the overhead they in-
troduce to the system. Finally, we show this method to
be effective in detecting previously unknown malware when
trained to detect similar malware under similar load condi-
tions.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—In-
vasive software (e.g., viruses, worms, Trojan horses)

General Terms
Reliability, Security

Keywords
System monitoring, malware detection, fault tolerance

1. INTRODUCTION
Malware is software that is designed to infiltrate, dam-

age, or otherwise compromise the computer systems and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAC-11, June 14-18, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0607-2/11/06 ...$10.00.

networks on which it executes. Commercially available an-
tivirus software traditionally adopts a signature-based ap-
proach to malware detection, wherein code residing in per-
sistent or volatile memory is labeled as malicious if a subset
of the code matches a signature in the detection database.
Such antivirus software has seen a widespread adoption due
to their low false-positive rate and ease of use [31].

However, the signature-based approach to malware de-
tection is a reactive approach that requires malware first
to be discovered and analyzed so that a signature can be
added to a detection database. As a result, malware au-
thors modify existing malware to evade detection. This is
accomplished through obfuscation, wherein the software is
modified by reordering, encrypting, or packing the code, in-
serting meaningless code, or otherwise changing the struc-
ture of the program without altering its function [21]. Such
obfuscation can generally change the code enough to evade
detection while still maintaining functionality. As an exam-
ple, the ZeuS botnet was first discovered in 2007 and sig-
natures to detect its many variants are included with most
commercially available antivirus software. Nevertheless, by
modifying the malware to avoid detection, ZeuS was used in
a successful cyber-attack against U.S. government agencies
in December 2010 [16]. Furthermore, a family of malware
known as metamorphic or polymorphic viruses are also able
to elude detection by automatically modifying themselves as
they propagate [26].

Because antivirus software systems are reactive, they leave
hosts vulnerable to both new malware and to modified ver-
sions of previously discovered malware. In environments tra-
ditionally targeted by zero-day malware, a more robust ap-
proach to detection is desired; specifically, one that is able
to detect previously undiscovered malware as it appears on
a host system. This paper describes an approach to solving
the malware detection problem using a custom sensor suite
and a Neyman-Pearson likelihood ratio test.

We developed a sensor suite to monitor the interaction be-
tween the applications running on a host and the underlying
operating system. The sensors monitor access to operating
system functions in Microsoft Windows XP [3] and are im-
plemented as a kernel-level device driver that measures the
number of calls made per second to each of the functions.
We present a statistical model that describes both clean and
infected systems in terms of the distribution of the data col-
lected by the sensors.

The detection technique is comprised of distinct training
and detection phases. During the training phase, the sensor
suite is used to monitor calls to system functions made by all

101

of the processes running on the system. The parameters of
the model are estimated from labeled training data and the
resulting models are used in the detection phase, wherein
the detection algorithm classifies the system as either clean
or infected.

We present a case study to demonstrate the advantages
of using our sensing and detection techniques for malware
detection. This study includes seven malware samples that
are used to infect a PC running Windows XP and acting
as an HTTP server. We present the performance of the
detector in terms of its empirical Receiver Operating Char-
acteristic (ROC) and show that the detector is successful in
both detecting malware it was trained to detect and similar
malware samples that were not used in training. We show
that training the models with canonical examples of mal-
ware is a successful inoculation technique that enables the
system to detect other samples of similar malware without
explicitly being trained to detect those samples. Further-
more, we show the detector to be successful in detecting
malware under a different type of load intended to mimic
desktop-computing usage.

Finally, we present a study of the performance of both
the sensors and detector in terms of the overhead they in-
troduce to the system. We present the performance of our
system under various benchmarks and compare the results
to a common commercial virus scanner.

The remainder of this paper is organized as follows: Sec-
tion 2 describes related work in malware detection, Section
3 describes the sensor suite we developed to detect malware,
Section 4 describes the malware detection technique, Section
5 describes a case study involving the Apache web server,
Section 6 presents an analysis of the performance overhead of
the system, Section 7 presents the results of the case study,
Section 8 addresses threats to validity, and Section 9 states
our conclusions and our plan for future work.

2. RELATED WORK
The research community has proposed solutions for mal-

ware detection that generally fall into one of three categories:
signature-based, anomaly-based, or classification-based [9].

2.1 Signature-based malware detectors
Signature-based detectors include most commercial an-

tivirus software, such as products offered by Symantec [7],
and common intrusion detection software such as SNORT
[24]. Signature-based approaches are limited because they
require detection signatures for known threats to be added to
a detection database. As a result, these detectors are vulner-
able to zero-day attacks and mutations of known malware,
including metamorphic and polymorphic viruses. Recent re-
search has shown that signature-based detectors can be ef-
fective in detecting polymorphic viruses [36] and obfuscated
variants of known malware [22]. However, these approaches
are limited to known polymorphisms and obfuscations.

2.2 Anomaly-based malware detectors
Anomaly detectors are used because they are not subject

to zero-day attacks or mutations. Anomaly detectors require
accurate models of known system behavior and flag varia-
tions from those models as potentially malicious. Sekar et
al. [28] present an anomaly-based detector wherein the sys-
tem calls required by a program are manually specified and
the detector monitors system calls, flagging any calls outside

the specification as malicious. Anomaly detectors are also
commonly used in intrusion detection systems, and typically
focus on only certain types of attacks, such as web based at-
tacks [17, 34]. Another anomaly-based approach to software
fault detection proposed by Stehle et al. [30] uses software
sensors and computational geometry to detect a variety of
software faults, including malware infections.

Anomaly-based detectors are limited because they require
accurate models of normal system behavior to be constructed.
Because deviation from their models is labeled as malicious,
these detectors are also prone to a high rate of false alarm
and do not perform well if the software is modified without
updating the model of normal behavior.

2.3 Classification-based malware detectors
Classification-based detectors differ from anomaly-based

detectors in that they use models of both normal and ma-
licious behavior to detect malware. Classification-based de-
tectors typically use labeled training data or expert knowl-
edge to build models of system behavior. In order to detect
the presence of malware, these detectors do inference on the
models to determine whether a sample is clean or infected,
typically using common machine learning algorithms. Early
research in the field of malware detection showed that ex-
tracting behavior-related information such as system calls
and strings from static executables could be used to train
simple detectors such as the naive Bayesian detector to de-
tect malware effectively in the absence of obfuscation [27].

More recent research shows that data gathered from per-
formance monitors can be used as features for a malware
detection system [29, 20]. These systems use memory, CPU,
network, and power sensors to infer the presence of malware
using machine learning approaches.

Research has shown that sandboxing executables and mon-
itoring security-relevant system functions and their argu-
ments can provide a valuable feature set for malware detec-
tion that can be classified using Support Vector Machines
(SVM) [23]. Furthermore, n-gram analysis of system calls
and their arguments can also be effective for malware de-
tection [18]. Martignoni et al. [19] show how this type of
monitoring can also be used to unpack obfuscated code.

System call monitoring is also used in classification ap-
proaches to malware detection based on taint analysis [35,
15, 12]. In taint analysis, programs are executed in an
environment that monitors all sensitive information intro-
duced to the system. By monitoring how this information is
used, the classifier can infer whether a program is exhibiting
known malicious behavior.

These proposed classification-techniques are limited in dif-
ferent ways. Techniques that require system emulators or
sandbox environments restrict analysis to be performed of-
fline. Many classification-based approaches also only show
their detectors to be robust in detecting known malware,
although some efforts have shown their models to be robust
in detecting unknown malware [23]. Finally, some efforts
have focused on detecting malicious applications running at
the user-level, for example by white listing operating sys-
tem services, which can be problematic for malware that
masquerades as an operating system service [18].

The malware detection technique presented in this pa-
per is a classification-based approach that relies on dynamic
analysis, specifically by monitoring calls to operating sys-
tem functions. This technique can be performed on a live

102

system, and does not require a system emulator or sandbox
environment. Furthermore, we do not restrict the number of
system calls we are monitoring nor do we exclude operating
system services. Rather than rely on sequences of calls or
n-gram analysis, we analyze the distribution of the data col-
lected from the sensors in terms of calls-per-second to each
function, and use each sensor to monitor the entire system
rather than specific processes. Finally, we show that our de-
tector is robust in detecting zero-day malware and is able to
successfully detect malware with a low probability of false
alarm under two different types of load conditions.

3. SENSING TECHNIQUE
To detect malware, we developed a sensor suite for Mi-

crosoft Windows XP that monitors the interaction between
software applications and the operating system. The suite
consists of 282 sensors, each of which monitors calls made
to a single operating system function. The sensors log the
process from which the system call originated and report
the number of calls made per second to each function. The
data from each of the sensors are used to build a statisti-
cal model to describe a clean and an infected system and to
infer whether a system is infected based on the developed
models.

The system functions that the sensors monitor can be clas-
sified according to the functions they perform [10]. The cate-
gories of the functions include: memory, processes, threads,
files, registry keys, security and auditing, and ports. By
monitoring access to these functions, we are monitoring how
applications interact with the operating system. This sens-
ing technique is relevant to malware detection because mal-
ware commonly focuses on stealing data, providing discreet
remote access, avoiding detection, and propagation. Each
of these tasks require the malware to interact with the op-
erating system in order to access the network, file system,
registry, and other system resources to complete their mali-
cious tasks.

Thus, these sensors were developed under the assumption
that data gathered from a system infected with malicious
software will, by virtue of a the malware’s access to system
functions for malicious purposes, differ from data gathered
from a clean system in ways that can be detected via meth-
ods from classical detection theory. Because they are im-
plemented at the kernel-level, the sensors will log malicious
access to system functions irrespective of the obfuscation
techniques used by the malware.

3.1 Sensor architecture
The Microsoft Windows XP operating system has 284 dis-

tinct native operating system functions, many of which are
exported for use by third-party developers and others that
are used only internally by the operating system. The ad-
dress of each of these system functions is stored in kernel
memory in a data structure called the System Service Dis-
patch Table (SSDT) [11]. To describe how this table is used,
we will consider the example of a user-mode application at-
tempting to write data to a file. When an application calls
the write() function, the appropriate code in the library for
writing files will execute in the context of the application’s
process. When the library is ready to write to the file, it
will call the kernel dispatcher, via either a SYSENTER or INT

2E interrupt command. The kernel dispatcher, KiSystem-
Service, is triggered by this command and copies the argu-

ments from the application to the kernel. It subsequently
looks up the address of the appropriate system function by
its index, in this case NtWriteFile (index 0x0112). The dis-
patcher calls NtWriteFile and copies the returned data back
to the application’s memory.

In order to monitor access to system functions such as
NtWriteFile, our sensors use a technique known as system-
call hooking [25], a technique often used by malware authors
to avoid detection [14]. This technique works by overwriting
the addresses of each system function stored in the SSDT
with the addresses of our corresponding sensor functions.
Each sensor function logs the numeric process identifier for
the process from which the system call originated, the lo-
cation of the file image from which the process was started,
and the time of the call. After this information is logged, the
sensor function calls the system function originally pointed
to by the SSDT and returns the data from this call to the
dispatcher. Thus, the monitoring is transparent to the ap-
plications being monitored.

The sensor functions are monitored by a separate thread
running at the kernel-level. This thread collects the data
logged by the individual sensors and computes the num-
ber of calls made to each system function per second. This
thread is also capable of logging a record of each system call
to a file. The output of this thread is a vector of measure-
ment data, where each entry of the vector is the number of
calls made to a particular operating system function in that
time period. The kernel thread computes and outputs a new
feature vector every second while the sensors are running.

The device driver is controlled by a user-mode applica-
tion that can install and uninstall the driver and start and
stop the sensors. The user-mode application can also com-
municate directly with the driver to retrieve sensor data for
additional processing. Figure 1 provides a visual depiction
of the sensor suite’s architecture. The components that com-
prise the sensor suite are highlighted in gray. The sensors
are installed in the kernel between the KiSystemService dis-
patcher and the system functions themselves. Each sensor
sends its collected data to a kernel thread that processes the
data, calculates the number of calls per second, and logs the
data. This monitor thread also communicates with the user-
mode controller to exchange data and manage the state of
the sensors.

4. MALWARE DETECTION TECHNIQUE
The malware detection system adopts a classical statis-

tical approach to detection, the Neyman-Pearson test [32].
Because the input features are the frequencies of calls to
each system function, the detection approach is unaffected
by attempts to avoid detection by means of obfuscation, en-
cryption, or polymorphism. Furthermore, since the input
features profile the behavior of the applications running on
a host by monitoring their interaction with the operating
system, this approach is also robust to detecting previously
unknown samples of malware that are behaviorally similar
to previously discovered samples.

The first step to implementing a Neyman-Pearson detec-
tor is to develop a statistical model to describe the data col-
lected from the sensors. Figure 2 shows the marginal distri-
bution of a representative sensor. This sensor measures the
number of calls made to the function NtQuerySystemInfor-

mation(), a function used to query performance counters,
get information about processes running on the system, and

103

Figure 1: Sensor block diagram showing the compo-
nents of our sensor system highlighted in gray

retrieve other system information. As shown in Figure 2,
we can approximate the distribution of the senor data as a
geometric distribution. To verify that every sensor can be
approximated by a geometric distribution, we perform Chi-
squared goodness-of-fit tests on data gathered from each of
the sensors of the hypothesis that the data are geometrically
distributed with parameter p estimated from the data.

Using a geometric distribution for each sensor as the sta-
tistical model of both a clean and infected system, we can
formulate the detection problem as our sampled data belong-
ing to one of two hypotheses: Either the data are sampled
from an infected system or the data are sampled from a clean
system. In order to continue, we make the assumption that
the data collected from each of the sensors are independent.
Although covariance analysis of the sensors indicates this as-
sumption to be false – for example NtOpenKey, NtCloseKey,
and other registry related functions are correlated – we con-
tinue with this assumption for a variety of reasons. First,
empirical research has shown that classifiers operating under
strong independence assumptions, such as the naive Bayes
classifier, perform well under many circumstances, includ-
ing malware detection [13, 33]. Second, assuming indepen-
dence allows us to develop a computationally simple detec-
tor, which is necessary for detecting malware on a live sys-
tem with minimal overhead. Finally, a detector built under
independence assumptions will allow us to gather baseline
information of the performance of a simple detector using
our newly developed sensors that can be used in future work
to compare with other detectors.

To formulate a decision rule to classify data as either clean
or infected, we use the following parameterization of the
geometric probability mass function (PMF):

P (x) = (1− p)xp, (1)

where the support of x is the set of non-negative integers
and p is the parameter of the distribution.

We formulate a Neyman-Pearson test for each individual
sensor by comparing the likelihood ratio under the two hy-

Figure 2: Representative sensor distribution for Nt-
QuerySystemInformation, with a dashed-line indi-
cating a geometric fit to the experimental data

potheses to a threshold ηi, particularly:

ηi <
> P (x|pc,i)
P (x|pi,i)

=
(1− pc,i)xpc,i
(1− pi,i)xpi,i

(2)

where pc,i and pi,i are the values of parameter p for a clean
and infected system for the ith sensor, respectively. We de-
cide on the threshold ηi by fixing the probability of false
alarm and maximizing the probability of detection.

Since we assume the sensors are independent, we can ex-
press the likelihood that the data belongs to a particular
class as the product of the likelihoods that it belongs in
that class for every sensor. By taking the logarithm of this
expression, we can express the log likelihood that the data
comes from a particular class as the sum of the log likelihood
ratio from each sensor. By simplifying this expression, we
obtain our decision rule:

η <
>

282∑
i=1

x (log(1− pc,i)− log(1− pi,i)) = Λ(x). (3)

In order to perform detection, we must first train a model
to determine our parameters p of the distribution. For train-
ing, we use the maximum likelihood estimate for p. Because
our formulation of the geometric distribution allows the sen-
sor values to be zero, the maximum likelihood estimator for
p is the reciprocal of the sample mean offset by one:

p̂ =

(
1 +

1

n

n∑
i=1

xi

)−1

. (4)

For training purposes, all data must be labeled as either
clean or infected. For each set of labeled data, we calculate
the estimate p̂ for each sensor. Thus, the output of the
training phase is two vectors that parameterize the model
used for detection.

During the detection phase, data from the sensors and the
p̂ values learned from the training data are input to equation
3 and if the likelihood ratio exceeds the threshold it is labeled
‘clean’, otherwise it is labeled ‘infected’. It is important to

104

note that the decision rule is a simple weighted sum and
therefore can be calculated extremely quickly. Furthermore,
the decision rule as described in Equation 3 uses only one
sample taken from each sensor. To improve detection, we
can train a model that uses N samples from each sensor for
detection. If we treat successive samples from each sensor
as independent, we can formulate the Neyman-Pearson test
as the sum of the likelihood ratio test given in Equation 3
over N samples:

η <
>

N∑
j=1

Λ(xj). (5)

Thus, Equation 5 describes the detector that we will use to
infer the presence of malware.

5. EXPERIMENTAL SETUP
This section provides an overview of the case study that

was performed to determine the effectiveness of the sensing
and detection techniques described in this paper. All tests
were performed on a Dell Optiplex GX280, with a Pentium
4 2.8GHz processor and 1GB of RAM, running Microsoft
Windows XP Professional, Service Pack 3.

The testbed is configured to operate as a webserver run-
ning the Apache 2.2 webserver [1], the PHP 5.3 hypertext
processor [5], and the MySQL 5.5.8 community database
server [4]. Additionally, the Microsoft .NET framework ver-
sions 2, 3, and 4 are installed since they are frequently re-
quired for malware to run successfully. The Microsoft Office
2007 suite is also installed, as it is another common vector
of attack.

The webserver hosts two separate websites: one using the
Drupal 7 [2] content management system (CMS) and the
other using the Silverstripe 2.4 [6] CMS. The Drupal instal-
lation is populated only with the default content, while the
Silverstripe installation contains a copy of the course website
for the graduate-level systems sequence ECES511-ECES513
at Drexel University. This site includes course information,
links to resources, homework assignments, lecture notes, and
video lectures.

Since the goal of this paper is to characterize the per-
formance of our detection technique in a realistic scenario,
we use both the Drupal and Silverstripe websites to place
a workload on the system. For the Drupal website, a re-
mote host connects to the management interface of the site
and requests the the full unit test suite be performed on the
server. The server then begins the test suite, reporting re-
sults of the tests back to the client as they complete. These
tests include functional tests such as the creation, modifica-
tion, and deletion of content, and system tests, such as the
execution of infinite loops.

For the Silverstripe website, we collected Apache web server
access logs for the live version of the course website over an
11 week period, from September to December 2010. Over
this time period, the data from a typical week consisted of
approximately 1000 pageviews from 135 unique visitors.

After installing our sensors on the testbed, we run both
the Drupal unit test suite and the web-access replayer from
a remote host and log the data from the sensors. The data
collected from this series of tests are used to build a model of
a clean system. To build a model of an infected system, we
repeat the tests on a system infected with various samples
of malware.

In total, we gathered two clean data sets and seven in-
fected data sets, one for each malware sample, each 16 hours
in length.

5.1 Malware samples
This section briefly describes the seven malware samples

used for testing. These samples can be classified as worms,
trojans, and botnets.

5.1.1 Worms
Autoit and YahLover are both network worms written in

the Autoit scripting language. Each of these samples propa-
gate via popular messaging protocols and removable media.
YahLover is much more aggressive in infecting removable
media, writing copies of itself to every folder on the remov-
able media and disguising the copies as folders.

5.1.2 Trojan Horses
Bybz is a Trojan horse that spreads via removable media

and over unprotected network shares. It steals user data
and transmits them via a backdoor to a remote host. It also
blocks access to security-websites. Bohu.a is a similar Tro-
jan, disguised as a Chinese-language high definition video
player that also blocks access to security-related websites.
It also blocks network traffic from common antivirus soft-
ware. Carberp steals user data such as browsing histories,
and transmits them via a backdoor to a remote host.

SpyEye is an advanced Trojan horse of Russian origin,
similar to the ZeuS malware. It monitors keystrokes, email,
and http access in an attempt to steal passwords and other
data, and transmits the data to a remote host. SpyEye is
part of a toolkit available for purchase on illicit channels that
allows malicious users to craft instantiations of the malware
for their specific uses. SpyEye uses rootkit-like functionality
to disguise itself and prevent detection.

5.1.3 Botnets
Darkness is a botnet designed to be used for executing

distributed DoS attacks on remote machines. This mal-
ware sample starts multiple processes to open communica-
tion with the botnet and awaits commands from a remote
server. It also uses rootkit-like functionality to prevent de-
tection.

6. PERFORMANCE OVERHEAD
The sensing and detection techniques described in this pa-

per were chosen in part for their relatively low overhead. In
this section we present the results of various tests to charac-
terize the performance overhead of our sensors and detector
and compare it to the overhead of a commercially available
antivirus program. For this comparison, we use Symantec
Antivirus Corporate Edition 10 [7].

Symantec Antivirus introduces overhead to the system
in a way that differs from our sensor and detection ap-
proach. While our approach adds overhead to each system
call, Symantec antivirus introduces overhead by performing
filesystem and memory scanning tasks in a separate process.
The overhead in this case manifests itself as borrowing CPU
time from the processes that are performing the benchmark
tests. For this benchmark testing, SAV was configured to
perform background memory and file system scanning only.

To characterize the overhead introduced to the system,
we used the PassMark PerformanceTest benchmark tool [8].

105

PerformanceTest provides benchmark tests for functions such
as 2D and 3D graphics, tests of particular interest because
they perform a large number of calls to system functions.
For 2D and 3D graphics, we characterize the overhead in
terms of frames-per-second (FPS) and vectors-per-second.
We also characterize the overhead of the CPU and mem-
ory benchmarks in terms of the number of operations they
require.

The results of all of these tests are presented in Table 1
in terms of the overhead each application introduces to the
system. The results are mixed, showing situations where our
techniques both outperformed and underperformed Syman-
tec AntiVirus. As a result, additional testing is desired,
which will include tests that are designed specifically to
mimic actual system usage, such as software compilation
and media encoding and decoding. Furthermore, it is possi-
ble to fine-tune the performance of our sensors and detector
by adjusting the amount of logging and frequency of data
sampling. For this set of tests, all system function accesses
were logged and data were sampled at one second intervals.

test SAV10 our sensors

2d graphics 1.2% 1.0%

3d graphics 0.074% 0.44%

CPU 0.1% 0.5%

memory 1.3% 1.8%

Table 1: Overhead comparison between Symantec
Antivirus 10 and our sensors and detector running
on a live system

7. MALWARE DETECTION RESULTS
In this section, we present the results of our analysis of the

Neyman-Pearson detector described in Equation 5. First, we
present the Receiver Operating Characteristic (ROC) of the
detector to describe the overall detector performance. In
order to get a better sense of how the detector is working,
we explore in detail the data collected by a single sensor.
To determine the effectiveness of our approach in detecting
zero-day malware, we train the detector to detect only one
of the seven malware samples, and test the detector on the
remaining data sets. Finally, we analyze the detector per-
formance under a very different load scenario and discuss
the applicability of this approach to the general malware
detection problem.

7.1 Malware detector performance
To characterize the performance of the detector, we first

conduct the likelihood ratio test in Equation 5, varying the
value of the threshold η. For each threshold value, we per-
form the likelihood ratio test. We form two data sets to
generate the ROC curve: The clean data set contains 16
hours of data gathered from a clean system and the infected
data set contains 56 total hours of data, 8 hours for each
of the malware samples. For the clean set, we keep track of
the number of false positives, and compute the false positive
rate α. For the infected set, we compute the true positive
rate (1− β). By plotting the true positive rate vs. the false
positive rate, we obtain the ROC curve of Figure 3. We
show the ROC curve for N = 1, 5, and 10 samples. The plot

shows an increase in detector performance as we increase the
number of samples.

We can characterize the performance of a detector in terms
of its empirical ROC by computing the area under the curve.
The area under the three curves is 0.9823, 0.9937, and 0.9946
for 1, 5 and 10 samples, respectively. Increasing the num-
ber of samples beyond 10 results in slight improvement in
the area under the curve. Having the ROC allows us to
determine for a fixed false alarm rate α, the threshold that
enables us to achieve that rate and the corresponding detec-
tion rate. For example, if we fix α at 0.02, we can achieve a
detection rate of 0.996.

Although we can improve the performance of our detec-
tor by taking more samples, in many circumstances we may
want an early warning that malware is detected so that ap-
propriate mitigations can be applied, such as isolating the
machine from the network, notifying a system administrator,
removing the infected files, or shutting down the machine.
In practice, if we use the N = 10 detector and threshold
in Figure 3, we receive a decision from the detector every
10 seconds and can use the successive decision to direct our
mitigation procedures.

Figure 3: Detector ROC curve for 1, 5 and 10 data
samples, showing increase in detector performance
for an increase in number of samples used for detec-
tion

7.2 Practical malware detector performance
While the ROC curve provides a general overview of the

performance of the detector, in practice the detector will
be used to classify previously unseen data. As such, we
consider the scenario where we use the ROC to choose a
threshold for the detector and then test the detector against
a separate data set. For this scenario, we assume that we can
tolerate a false-positive rate of 2% at N = 10 and choose our
threshold accordingly. Then, we test the detector against a
separate data set, also comprised of 16 hours of clean data
and 56 hours of infected data, with each malware sample
represented in the data.

For this round of testing, we see a detection rate of 98.9%
and a false positive rate of 1.20%, both values comparable
those presented in the ROC curve. Thus, given that the sys-
tem is under a load that is similar to that which was used

106

for training, the detector is successful in detecting known
malware with a low probability of false alarm. The ques-
tion remains whether this detector is successful in detecting
previously unknown malware, but before we explore the an-
swer to that question we will show using an example from
one of the sensors why this simple detector is successful in
detecting known malware.

7.3 Malware sensor analysis
In the previous section, we have shown our detector to be

successful in detecting known malware samples. In this sec-
tion, we explore the inner-workings of the detector to explain
why it is successful. For this analysis, we consider a single
sensor, NtQuerySystemInformation. NtQuerySystemInfor-

mation() has many uses, including querying performance
counters, getting information about processes running on
the system, and getting general system information, such
as what memory addresses are available to applications and
DLLs. This function is often used by malware authors to
gather system information, particularly about applications
running on the system. This is done both for monitoring
purposes and to protect against detection. For example,
Autoit monitors what processes are running on the system
to kill those that may be used in its removal, such as the
task manager and the command shell.

Figure 4: NtQuerySystemInformation ROC curve

If we consider NtQuerySystemInformation to be the only
sensor we have for our detector, we can obtain the ROC
curve of the detector, shown in Figure 4. The ROC shows
this detector to be only moderately successful in detecting
malware, with an area under the curve of only 0.697. These
performance numbers are typical of the highest performing
sensors, which include NtQueryKey, NtDelayExecution, and
NtWriteFile. From this analysis, it is clear that no single
sensor makes an effective classifier. Thus, to achieve the de-
sired performance, we must consider a larger set of sensors,
as we do in the detector described by Equation 5.

To see why a single sensor such as NtQuerySystemInfor-

mation allows us to discriminate between a clean an infected
system to a limited extent, we can examine the sensor values
in the time domain. Figure 5 shows sensor values over a 5
minute time period for both a clean and infected system. In
both cases, we see periodic bursts of calls to NtQuerySys-

Figure 5: Plot of sensor values for NtQuerySystem-
Information for a clean and infected system

temInformation(), and an otherwise constant frequency of
calls. However, for the case of the infected system, we see
that the constant number of calls made between bursts is
higher than the clean system, as the malware regularly uses
the function to detect unwanted processes.

7.4 Inoculation against malware infection
In order to test the robustness of this detector in classi-

fying zero-day malware samples, we consider the case when
the detector is trained to detect only one of the seven mal-
ware samples. This detector is then tested against the data
for each of the other six samples. For this testing, we use
N = 10 samples and train the system on all 16 hours of
data for a particular malware sample. Then, we compute
the ROC curve for the detector, using 16 hours of clean
data to compute the false positive rate. Finally, we choose
our threshold such that our false positive rate is fixed at 2%,
and use the detector to classify the rest of the samples. For
each of these samples, we calculate the the percentage of
missed detections, which we present in Table 2.

Analyzing the data in Table 2, we notice that training on
Yahlover enables us to detect Autoit, Bohu, and Bybz with a
high rate of success. This detector is successful in classifying
Autoit and Bybz because they are also behaviorally similar
to Yahlover, as they both attempt to propagate over then
network. In contrast, we see that we are largely unable to
detect the more advanced malware samples Darkness and
SpyEye, nor are we successful in detecting Carberp, whose
main functionality is stealing data.

If we consider instead the system trained to detect Dark-
ness, we see that we have a high rate of success in detecting
all other six malware samples. This indicates that by care-
fully choosing canonical samples to train our system, we
are able to detect a wide array of related malware. These
canonical samples should be chosen such that they represent
a wide cross section of malicious behavior. In this example,
we see that the most sophisticated malware samples, such
as Darkness, which contain functionality to hide from detec-
tion, infect a machine in multiple ways, and provide remote
functionality offer the best detection performance.

Finally, we observe that we can discern what samples of
malware are most dissimilar in terms of our statistical model
by looking for those pairs that offer poor performance for de-
tecting each other. For example, training for either SpyEye
or Yahlover results in poor performance when detecting the
other, since Yahlover is a simple worm that propagates us-
ing messaging protocols and SpyEye is a sophisticated data
stealing tool.

107

test
Autoit Bohu Carberp SpyEye Yahlover Darkness Bybz

tr
ai
n

Autoit — 6.60% 0.52% 0.76% 87.2% 0.76% 25.9%

Bohu 0.00% — 0.04% 0.04% 0.00% 0.03% 0.00%

Carberp 0.03% 0.21% — 0.24% 0.14% 0.07% 0.00%

SpyEye 0.00% 0.28% 0.10% — 13.5% 0.10% 0.07%

Yahlover 0.14% 0.21% 82.5% 84.0% — 72.3% 0.04%

Darkness 0.00% 0.17% 0.03% 0.10% 0.07% — 0.00%

Bybz 2.15% 31.6% 23.1% 30.1% 10.0 % 46.6% —

Table 2: Missed detection percentages when a single malware sample is used to train the system and is used
to detect the remaining samples

The results presented in this section show that our sens-
ing and detection techniques require training data gathered
from carefully selected canonical samples of malware. If the
canonical samples are chosen to represent a wide array of
malware functionality, we can inoculate our detector against
related malware samples with a low probability of error.

7.5 Detection under different loads
Thus far, we have considered only loads that are charac-

teristic of a web server. In this section, we consider a load
that is more closely matched to desktop computing. For this
analysis, we used the same testbed as used in the previous
section. The only change is that we installed Openoffice.org
3.3.0 and its functional test suite. As load generation for
the system, we used the testing tool and tests distributed
with OpenOffice. Particularly, we chose the subset of re-
quired tests associated with the writer, spreadsheet, draw-
ing, math, and presentation components. Both OpenOffice
and the test tool were run on the test machine, and the
tests took approximately 4 hours to complete. These tests
were performed for three scenarios: a clean system, a system
infected with Bybz, and a system infected with Bohu.

Using the model developed with the web server loads, we
are unable to classify the data gathered under the desktop-
like OpenOffice load. Namely, we experience a near-100%
false positive rate. Instead, we considered a situation where
we train the detector using the desktop load, and then at-
tempt classification. We plot the ROC curve of this detector
in Figure 6. This ROC curve shows that although we can-
not use the model from the server load to perform malware
detection, retraining our models on the desktop load offers
performance comparable to the server load with N = 10.
This result indicates that if the model of a clean and in-
fected system are developed for the specific type of load the
system will be experiencing, we can reasonably expect good
performance of this Neyman-Pearson detector.

We also consider the case where the model is built using
both types of load. For this test we used both the 12 hours
of data from desktop load and 12 hours of data from the
server load to avoid biasing the resulting model. The ROC
of this detector is shown in Figure 7. This figure shows that
even when increasing the sample size to N = 30, we are still
unable to achieve the performance of the detector in either
of the scenarios where we considered only one type of load.
A closer analysis of the individual sensor data indicates that
by training on different types of load, we have introduced
additional complexity to the marginal distribution of each
sensor, such that a geometric distribution is no longer a

Figure 6: ROC curve for system under desktop load,
showing similar performance to server load ROC
curve

good approximation. This has caused the performance of
the overall detector to degrade.

The results of this section provide us with two conclusions:
First, if the load used for training is sufficiently similar to the
actual load of the system, we can expect good performance
for the detection of zero-day malware. However, if the load
differs from the training load, we cannot expect the detec-
tor to be effective. Second, while the Neyman-Pearson test
with independence assumptions and geometric marginal dis-
tributions provides an adequate model under specific types
of load, the model breaks down when considering diverse
loads simultaneously, and causes the performance of the de-
tector to degrade.

8. THREATS TO VALIDITY
The first threat to validity is that we have restricted the

types of load placed on the system in such a way that we
have made the malware more easy to detect. We presented
results for a server-like and desktop-like load, and showed
that training on one does not allow us to detect under the
other, and that training on both results in decreased detec-
tor performance from the case where we train on only one
of the loads. However, our results are promising in show-
ing that even under a fundamentally different type of load,
the detector still provides adequate discrimination between

108

Figure 7: ROC curve for system under both desk-
top and web server loads, showing degraded perfor-
mance

clean and infected systems. Thus, these results highlight the
need for a more accurate statistical model that can more ac-
curately model the sensor values under diverse loads, which
is af subject of our future work.

Next, we have assumed our sensors to be independent
when our analysis of the sensor data showed certain sensors
to be correlated. While we chose to assume independence for
mathematical and computational simplicity, previous empir-
ical research has shown naive Bayesian detectors operating
under strong independence assumptions to be effective in
classifying many real-world data sets for which independence
does not hold true, including some applications in malware
detection. This naive approach serves as an excellent base-
line to compare to more complex detectors, which we plan
to do as part of our future work.

Finally, our sensor-detector system operates on the op-
erating system where we are performing detection, leaving
our system vulnerable to attack from malware. The user-
mode controller is particularly vulnerable to attack since it
is not afforded the limited protections that executing at the
operating system level provides. This, however, does not
contrast with how commercially available antivirus detec-
tors function: they are comprised of a user-level interface
and system-level services for detection. Thus the vulner-
ability of our sensor-detector system is not unique, but is
common to malware detectors that run on the same operat-
ing system as the malware they are detecting. For example,
our sensors are vulnerable to attacks by rootkits that hook
system calls to enable their stealth functionality. Like other
malware detectors, if these sensors are deployed on a live
system, we must take actions to mitigate the risk of attack
such as monitoring whether the system calls remain hooked
by our sensors and are returning valid data.

9. CONCLUSIONS AND FUTURE WORK
We have presented a novel approach to malware detection

using a suite of dynamic sensors and a Neyman-Pearson de-
tector. We have implemented the sensor suite as a kernel-
level device driver for Microsoft Windows XP and imple-
mented a Neyman-Pearson test to classify the data. We

performed a case study on the detection of seven malware
samples and reported results that demonstrate the effective-
ness of this approach in detecting malware under two dis-
tinct types of load.

We have shown the sensors and detection technique to
be effective in classifying systems as either clean or infected
with a high probability of detection and low probability of
false alarm. Furthermore, we have shown that our approach
is able to detect unknown malware, provided the system has
been trained to detect similar malware. By using canonical
examples of malware to train our detector, we inoculate the
detector against similar types of malware to detect zero-day
attacks.

Finally, we have presented a sensing technique that is both
low-overhead and effective in capturing the differences be-
tween a clean and infected system. Furthermore, we have
presented a technique for classifying the data gathered from
these sensors that is both mathematically simple and com-
putationally inexpensive.

This paper represents our first approach to malware de-
tection using the described sensor suite. Accordingly, we
plan to continue our analyses of the overhead introduced by
the sensors and detector and compare it to the overhead of
commercially available detectors.

We plan to expand on the detection technique presented in
this paper to address the assumption of independence. This
work will include feature reduction to choose the set of inde-
pendent sensors to model the system and the development
of a more accurate statistical model to describe the sensor
distributions. We also plan to perform comparisons between
our detection-theory based approach to malware detection
and other common approaches, including ones from machine
learning and computational geometry.

Finally, we plan to continue to collect data using our sen-
sor suite for different types of data loads and different mal-
ware samples. We will use these expanded data sets to test
and refine our detection technique and to expand it to the
problem of classifying different types of malware.

10. REFERENCES
[1] Apache, 2010. http://httpd.apache.org.

[2] Drupal, 2010. http://www.drupal.org.

[3] Microsoft, 2010. http://www.microsoft.com.

[4] Mysql, 2010. http://www.mysql.com.

[5] Php, 2010. http://www.php.net.

[6] Silverstripe, 2010. http://www.silverstripe.org.

[7] Symantec, 2010. http://www.symantec.com.

[8] Passmark software, 2011. http://www.passmark.com/.

[9] Y. Al-Nashif, A. Kumar, S. Hariri, G. Qu, Y. Luo, and
F. Szidarovsky. Multi-level intrusion detection system
(ml-ids). In Autonomic Computing, 2008. ICAC ’08.
International Conference on, pages 131 –140, 2008.

[10] A. Baker and J. Lozano. The Windows 2000 Device
Driver Book. Prentice Hall, 2nd edition, 2000.

[11] P. Dabak, S. Phadke, and M. Borate. Undocumented
Windows NT. Hungry Minds, Oct. 1999.

[12] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song.
Dynamic spyware analysis. In 2007 USENIX Annual
Technical Conference on Proceedings of the USENIX
Annual Technical Conference, pages 18:1–18:14,
Berkeley, CA, USA, 2007. USENIX Association.

109

[13] I. Firdausi, C. lim, A. Erwin, and A. S. Nugroho.
Analysis of machine learning techniques used in
behavior-based malware detection. In Advances in
Computing, Control and Telecommunication
Technologies (ACT), 2010 Second International
Conference on, pages 201 –203, 2010.

[14] G. Hoglund and J. Butler. Rootkits: Subverting the
Windows Kernel. Addison Wesley Professional, 2005.

[15] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. A.
Kemmerer. Behavior-based spyware detection. In
Proceedings of the 15th conference on USENIX
Security Symposium - Volume 15, Berkeley, CA, USA,
2006. USENIX Association.

[16] B. Krebs. White house ecard dupes dot-gov geeks,
Jan. 2011.

[17] C. Kruegel and G. Vigna. Anomaly detection of
web-based attacks. In Proceedings of the 10th ACM
conference on Computer and communications security,
CCS ’03, pages 251–261, New York, NY, USA, 2003.
ACM.

[18] A. Lanzi, D. Balzarotti, C. Kruegel,
M. Christodorescu, and E. Kirda. Accessminer: using
system-centric models for malware protection. In
Proceedings of the 17th ACM conference on Computer
and communications security, CCS ’10, pages 399–412,
New York, NY, USA, 2010. ACM.

[19] L. Martignoni, M. Christodorescu, and S. Jha.
Omniunpack: Fast, generic, and safe unpacking of
malware. Computer Security Applications Conference,
2007. ACSAC 2007. Twenty-Third Annual, pages
431–441, Dec. 2007.

[20] R. Moskovitch, Y. Elovici, and L. Rokach. Detection
of unknown computer worms based on behavioral
classification of the host. Comput. Stat. Data Anal.,
52:4544–4566, May 2008.

[21] C. Nachenberg. Computer virus-antivirus coevolution.
Commun. ACM, 40(1):46–51, 1997.

[22] M. D. Preda, M. Christodorescu, S. Jha, and
S. Debray. A semantics-based approach to malware
detection. ACM Trans. Program. Lang. Syst.,
30(5):1–54, 2008.

[23] K. Rieck, T. Holz, C. Willems, P. Düssel, and
P. Laskov. Learning and classification of malware
behavior. In Proceedings of the 5th international
conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, DIMVA ’08, pages
108–125, Berlin, Heidelberg, 2008. Springer-Verlag.

[24] M. Roesch. Snort - lightweight intrusion detection for
networks. In Proceedings of the 13th USENIX
conference on System administration, LISA ’99, pages

229–238, Berkeley, CA, USA, 1999. USENIX
Association.

[25] M. Russinovich and B. Cogswell. Windows nt
system-call hooking, Jan 1997.
http://www.drdobbs.com/184410109.

[26] K. Schreiner. New viruses up the stakes on old tricks.
Internet Computing, IEEE, 6(4):9 – 10, 2002.

[27] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo.
Data mining methods for detection of new malicious
executables. In SP ’01: Proceedings of the 2001 IEEE
Symposium on Security and Privacy, page 38,
Washington, DC, USA, 2001. IEEE Computer Society.

[28] R. Sekar, T. Bowen, and M. Segal. On preventing
intrusions by process behavior monitoring. In ID’99:
Proceedings of the 1st conference on Workshop on
Intrusion Detection and Network Monitoring, pages
4–4, Berkeley, CA, USA, 1999. USENIX Association.

[29] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and
Y. Weiss. Andromaly: a behavioral malware detection
framework for android devices. Journal of Intelligent
Information Systems, pages 1–30, 2011.
10.1007/s10844-010-0148-x.

[30] E. Stehle, K. Lynch, M. Shevertalov, C. Rorres, and
S. Mancoridis. On the use of computational geometry
to detect software faults at runtime. In Proceeding of
the 7th international conference on Autonomic
computing, ICAC ’10, pages 109–118, New York, NY,
USA, 2010. ACM.

[31] P. Szor. The Art of Computer Virus Research and
Defense. Addison Wesley Professional, Feb. 2005.

[32] H. L. VanTrees. Detection, Estimation, and
Modulation Theory. John Wiley and Sons, 2001.

[33] C. Wang, J. Pang, R. Zhao, and X. Liu. Using api
sequence and bayes algorithm to detect suspicious
behavior. In Communication Software and Networks,
2009. ICCSN ’09. International Conference on, pages
544 –548, 2009.

[34] K. Wang and S. J. Stolfo. Anomalous payload-based
network intrusion detection. pages 203–222, 2004.

[35] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: capturing system-wide information flow for
malware detection and analysis. In Proceedings of the
14th ACM conference on Computer and
communications security, CCS ’07, pages 116–127,
New York, NY, USA, 2007. ACM.

[36] T. Yong and C. Shigang. An automated
signature-based approach against polymorphic
internet worms. Parallel and Distributed Systems,
IEEE Transactions on, 18(7):879 –892, 2007.

110

